UC San Diego

JACOBS SCHOOL OF ENGINEERING

The Challenge

Climate Crisis: IPCC identifies Direct Air Capture (DAC) as essential technology for achieving 1.5°C warming limits

Gigatons Required: Must scale to billions of tons CO₂ removal annually by 2050

Hard-to-Abate Sectors: DAC needed to balance residual emissions from aviation, shipping, cement production

Market Opportunity

Policy Support: U.S. Section 45Q tax credits (\$50-85/ton CO₂) Growing Investment: Government and private funding accelerating globally

Commercial Demand: Carbon removal markets expanding rapidly Our Approach

Proven Chemistry: Potassium carbonate sorbent system (Keith et al., 2018)

Process Innovation: Integrated thermal management with heat recovery Modular Design: Scalable for diverse deployment scenarios

Environmental

Net Carbon Balance

- Gross CO₂ emissions: 79 114 kg/hr (59 114 kg/hrfrom CH₄ $ext{combustion} + 20$ 000 kg/hr from gridelectricity)
- CO₂ captured: 82
- 500 kg/hr• Net removal: +3386 kg $\rm CO_2/hr \rightarrow$

~29 700 t CO₂/yr

Water Management

- Zero external discharges: no wastewater or solid waste leaves the site
- Water recycle: crystallizer blowdown via ZLD evaporator recovers ≥ 95 % of process water

Emissions

- Near-zero fugitive particulates due to sealed reactors and baghouse filters
- No NPDES permit needed: all blowdown is neutralized and routed to municipal sewer under existing industrial permit

Optimization (Heat Recovery)

Table 6: Annual Utility Costs: Baseline vs. Pinch-Integrated				
Utility $(MW \cdot hr)^{-1}$	Duty (MW) Energy (MW·hr)	Unit Cost Annual Cost		
			$(\times 10^3 \text{ MW} \cdot \text{hr})$	$(\$ \times 10^{6})$
Baseline (No Integration)				
Cooling Water (CW)	159.75	8.00	$159.75 \times 8 = 1,278.0$	\$10.22
Fired Heater (Natural Gas)	95.19	30.00	$95.19 \times 8 = 761.5$	\$22.85
Total Baseline Cost	254.94	-	2,039.5	33.07
Pinch-Integrated (Optimization	1 #1)			
Cooling Water (CW)	64.55	8.00	$64.55 \times 8 = 516.4$	\$4.13
Fired Heater (Natural Gas)	0.00	30.00	$0.00 \times 8 = 0.0$	\$0.00
Total Pinch Cost	64.55	-	516.4	4.13
Annual Savings: Baseline – Pi	nch			
Cooling Water (CW)	95.20	-	$95.20 \times 8 = 761.6$	\$6.09
Fired Heater (Natural Gas)	95.19	-	$95.19 \times 8 = 761.5$	\$22.85
Total Savings	190.39	-	1,523.1	28.94

> 95 MW of Internal Heat **Recovery:**

By applying pinch-analysis and installing eight process-to-process exchangers, we recovered 95.19 MW of hot-stream duty that would otherwise be wasted. This eliminated all external fired-heater demand and cut cooling-water duty from 159.75 MW down to 64.55 MW.

\$28.9 M/yr in Utility-Cost Savings:

The reduced external heating and cooling translate into dramatic economic benefits—annual utility costs drop from \$33.07 M (baseline) to \$4.13 M (pinch-integrated), yielding \$28.94 M in net savings.

Plant Simulation: Direct Air Capture of CO₂

Tammam Abo-Nabout, Macallister Moore, William Pangestu, Raynald Gozali Department of Chemical and Nano Engineering, University of California, San Diego

CO₂ Capture: 1.29 Mt/year Product Quality: 100% CO₂ purity at 151 bar, 40°C Energy Integration Success Heat Generated: 527.7 MW total recoverable heat Heat Required: 175.5 MW (calciner only)

Net Surplus: 352 MW available for cogeneration Utility Savings: \$28.94 M/year through pinch analysis

Packed bed upgrade for Contactor: +14.7% efficiency (+457 kmol/h

Economic gain: \$39,770 capital + \$5,500/year operational savings

Environmental Impact Gross Emissions: 79.1 t CO_2 / hr (methane + electricity) CO_2 Captured: 147.3 t CO_2/hr Net Removal: $+68.2 \text{ t CO}_2/\text{hr} (29,700 \text{ t/year})$

Calcium Loop: 0.029% imbalance at the pellet (excellent closure) Potassium Loop: Stable convergence achieved

Unoptimized Economics

Total Grass Roots Cost: M\$289 Working Capital: M\$43.35

Government Credits: M\$30 CO_2 as a Commodity: M\$30

Utility Cost: M\$198,422 Waste Treatment: M\$0 Cost of Manufacturing: **Optimized Economics**

Total Grass Roots Cost: M\$455.7 Land Cost: M\$30 Working Capital: M\$68.36

Revenue Government Credits: M\$30 CO_2 as a Commodity: M\$30 Carbon Credits: \$8 Total: M\$68

Operating Expenses Utility Cost: M\$90,114 Labor Cost: M\$1.15 Waste Treatment: M\$0 Raw Materials: M\$15.088 Cost of Manufacturing: M\$129.485

NPV: - \$1.07 trillion

Conclusions & Recommendations **Recommendations**: • Electrical and thermal utility demands must be decreased as surpassed technical targets with 1.29 Mt-CO2/year they are the major drivers of operational costs • Modular construction strategies necessary to achieve economic and closer engagement with equipment vendors are advised

Acknowledgements

Plant design based on Carbon Engineering's DAC plant in Squamish, BC

Dr. Drews, Dr. Russ, Dr. Powell

UCSD Jacobs School of Engineering, Department of Chemical and Nano Engineering

CO₂ Plume
Displaced Brine
Well Casing

• Storage: 1000+ years